4.5 Article

Electrodiffusion Models of Neurons and Extracellular Space Using the Poisson-Nernst-Planck Equations-Numerical Simulation of the Intra- and Extracellular Potential for an Axon Model

期刊

BIOPHYSICAL JOURNAL
卷 105, 期 1, 页码 242-254

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2013.05.041

关键词

-

资金

  1. German Ministry of Education and Research (BMBF) [01GQ1003A]

向作者/读者索取更多资源

In neurophysiology, extracellular signals-as measured by local field potentials (LFP) or electroencephalography-are of great significance. Their exact biophysical basis is, however, still not fully understood. We present a three-dimensional model exploiting the cylinder symmetry of a single axon in extracellular fluid based on the Poisson-Nernst-Planck equations of electrodiffusion. The propagation of an action potential along the axonal membrane is investigated by means of numerical simulations. Special attention is paid to the Debye layer, the region with strong concentration gradients close to the membrane, which is explicitly resolved by the computational mesh. We focus on the evolution of the extracellular electric potential. A characteristic up-down-up LFP waveform in the far-field is found. Close to the membrane, the potential shows a more intricate shape. A comparison with the widely used line source approximation reveals similarities and demonstrates the strong influence of membrane currents. However, the electrodiffusion model shows another signal component stemming directly from the intracellular electric field, called the action potential echo. Depending on the neuronal configuration, this might have a significant effect on the LFP. In these situations, electrodiffusion models should be used for quantitative comparisons with experimental data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据