4.7 Article

Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 143, 期 18, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4935176

关键词

-

资金

  1. National Natural Science Foundation of China [21303057, 21433004]
  2. Shanghai Putuo District Grant [2014-A-02]
  3. Specialized Research Fund for the Doctoral Program of Higher Education [20130076120019]
  4. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C=O or C N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据