4.5 Article

Chromatin Decondensation and Nuclear Softening Accompany Nanog Downregulation in Embryonic Stem Cells

期刊

BIOPHYSICAL JOURNAL
卷 103, 期 10, 页码 2060-2070

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2012.10.015

关键词

-

资金

  1. University of Vienna
  2. Medical Research Council
  3. Human Frontiers in Science Program
  4. Royal Society
  5. MRC [G0902319] Funding Source: UKRI
  6. Medical Research Council [G0902319] Funding Source: researchfish

向作者/读者索取更多资源

The interplay between epigenetic modification and chromatin compaction is implicated in the regulation of gene expression, and it comprises one of the most fascinating frontiers in cell biology. Although a complete picture is still lacking, it is generally accepted that the differentiation of embryonic stem (ES) cells is accompanied by a selective condensation into heterochromatin with concomitant gene silencing, leaving access only to lineage-specific genes in the euchromatin. ES cells have been reported to have less condensed chromatin, as they are capable of differentiating into any cell type. However, pluripotency itself-even prior to differentiation-is a split state comprising a naive state and a state in which ES cells prime for differentiation. Here, we show that naive ES cells decondense their chromatin in the course of downregulating the pluripotency marker Nanog before they initiate lineage commitment. We used fluorescence recovery after photobleaching, and histone modification analysis paired with a novel, to our knowledge, optical stretching method, to show that ES cells in the naive state have a significantly stiffer nucleus that is coupled to a globally more condensed chromatin state. We link this biophysical phenotype to coinciding epigenetic differences, including histone methylation, and show a strong correlation of chromatin condensation and nuclear stiffness with the expression of Nanog. Besides having implications for transcriptional regulation and embryonic cell sorting and suggesting a putative mechanosensing mechanism, the physical differences point to a system-level regulatory role of chromatin in maintaining pluripotency in embryonic development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据