4.5 Article

The α-Helix to β-Sheet Transition in Stretched and Compressed Hydrated Fibrin Clots

期刊

BIOPHYSICAL JOURNAL
卷 103, 期 5, 页码 1020-1027

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2012.07.046

关键词

-

资金

  1. National Institutes of Health [HL030954, HL090774]
  2. Russian Academy of Sciences under the Program Molecular and Cellular Biology

向作者/读者索取更多资源

Fibrin is a protein polymer that forms the viscoelastic scaffold of blood clots and thrombi. Despite the critical importance of fibrin deformability for outcomes of bleeding and thrombosis, the structural origins of the clot's elasticity and plasticity remain largely unknown. However, there is substantial evidence that unfolding of fibrin is an important part of the mechanism. We used Fourier transform infrared spectroscopy to reveal force-induced changes in the secondary structure of hydrated fibrin clots made of human blood plasma in vitro. When extended or compressed, fibrin showed a shift of absorbance intensity mainly in the amide I band (1600-1700 cm(-1)) as well as in the amide II and III bands, indicating an increase of the beta-sheets and a corresponding reduction of the alpha-helices. The structural conversions correlated directly with the strain or pressure and were partially reversible at the conditions applied. The additional absorbance observed at 1612-1624 cm(-1) was characteristic of the nascent interchain beta-sheets, consistent with protein aggregation and fiber bundling during clot deformation observed using scanning electron microscopy. We conclude that under extension and/or compression an alpha-helix to beta-sheet conversion of the coiled-coils occurs in the fibrin clot as a part of forced protein unfolding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据