4.8 Article

MOF-Derived Bifunctional Cu3P Nanoparticles Coated by a N,P-Codoped Carbon Shell for Hydrogen Evolution and Oxygen Reduction

期刊

ADVANCED MATERIALS
卷 30, 期 6, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201703711

关键词

Cu3P; hydrogen evolution reaction; metal-organic frameworks; oxygen reduction reaction; porous carbon

资金

  1. National Natural Science Foundation of China [21671175, 21371153]
  2. Program for Science & Technology Innovation Talents in Universities of Henan Province [164100510005]
  3. Zhengzhou University

向作者/读者索取更多资源

Metal-organic frameworks (MOFs) have recently emerged as a type of uniformly and periodically atom-distributed precursor and efficient self-sacrificial template to fabricate hierarchical porous-carbon-related nanostructured functional materials. For the first time, a Cu-based MOF, i.e., Cu-NPMOF is used, whose linkers contain nitrogen and phosphorus heteroatoms, as a single precursor and template to prepare novel Cu3P nanoparticles (NPs) coated by a N,P-codoped carbon shell that is extended to a hierarchical porous carbon matrix with identical uniform N and P doping (termed Cu3P@NPPC) as an electrocatalyst. Cu3P@NPPC demonstrates outstanding activity for both the hydrogen evolution and oxygen reduction reaction, representing the first example of a Cu3P-based bifunctional catalyst for energy-conversion reactions. The high performances are ascribed to the high specific surface area, the synergistic effects of the Cu3P NPs with intrinsic activity, the protection of the carbon shell, and the hierarchical porous carbon matrix doped by multiheteroatoms. This strategy of using a diverse MOF as a structural and compositional material to create a new multifunctional composite/hybrid may expand the opportunities to explore highly efficient and robust non-noble-metal catalysts for energy-conversion reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据