4.8 Article

Black-Phosphorus-Based Orientation-Induced Diodes

期刊

ADVANCED MATERIALS
卷 30, 期 2, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201704653

关键词

anisotropy; black phosphorus; diodes; energy band theory; orientation barrier

资金

  1. National Key Research and Development Program of China [2016YFA0301102, 2016YFA0200200]
  2. Natural Science Foundation of China [11774184, 11374164]

向作者/读者索取更多资源

Despite many decades of research of diodes, which are fundamental components of electronic and photoelectronic devices with p-n or Schottky junctions using bulk or 2D materials, stereotyped architectures and complex technological processing (doping and multiple material operations) have limited future development. Here, a novel rectification device, an orientation-induced diode, assembled using only few-layered black phosphorus (BP) is investigated. The key to its realization is to utilize the remarkable anisotropy of BP in low dimensions and change the charge-transport conditions abruptly along the different crystal orientations. Rectification ratios of 6.8, 22, and 115 can be achieved in cruciform BP, cross-stacked BP junctions, and BP junctions stacked with vertical orientations, respectively. The underlying physical processes and mechanisms can be explained using orientation barrier band theory. The theoretical results are experimentally confirmed using localized scanning photocurrent imaging. These orientation-induced optoelectronic devices open possibilities for 2D anisotropic materials with a new degree of freedom to improve modulation in diodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据