4.8 Article

Confined Synthesis of Carbon Nitride in a Layered Host Matrix with Unprecedented Solid-State Quantum Yield and Stability

期刊

ADVANCED MATERIALS
卷 30, 期 2, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201704376

关键词

carbon nitride; confined reaction; layered double hydroxides; solid-state quantum yield

资金

  1. National Natural Science Foundation of China (NSFC)
  2. 973 Program [2014CB932102]
  3. Beijing Natural Science Foundation [2174082]
  4. Fundamental Research Funds for the Central Universities [buctylkxj01]

向作者/读者索取更多资源

Fluorescent carbon nanomaterials have drawn tremendous attention for their intriguing optical performances, but their employment in solid-state luminescent devices is rather limited as a result of aggregation-induced photoluminescence quenching. Herein, ultrathin carbon nitride (CN) is synthesized within the 2D confined region of layered double hydroxide (LDH) via triggering the interlayer condensation reaction of citric acid and urea. The resulting CN/LDH phosphor emits strong cyan light under UV-light irradiation with an absolute solid-state quantum yield (SSQY) of 95.9 +/- 2.2%, which is, to the best of our knowledge, the highest value of carbon-based fluorescent materials ever reported. Furthermore, it exhibits a strong luminescence stability toward temperature, environmental pH, and photocorrosion. Both experimental studies and theoretical calculations reveal that the host-guest interactions between the rigid LDH matrix and interlayer carbon nitride give the predominant contribution to the unprecedented SSQY and stability. In addition, prospective applications of the CN/LDH material are demonstrated in both white light-emitting diodes and upconversion fluorescence imaging of cancer cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据