4.5 Article

Quantifying the Rheological and Hemodynamic Characteristics of Sickle Cell Anemia

期刊

BIOPHYSICAL JOURNAL
卷 102, 期 2, 页码 185-194

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2011.12.006

关键词

-

资金

  1. National Science Foundation [CBET-0852948]
  2. National Institutes of Health [R01HL094270]
  3. Div Of Chem, Bioeng, Env, & Transp Sys
  4. Directorate For Engineering [0852948] Funding Source: National Science Foundation

向作者/读者索取更多资源

Sickle erythrocytes exhibit abnormal morphology and membrane mechanics under deoxygenated conditions due to the polymerization of hemoglobin S. We employed dissipative particle dynamics to extend a validated multiscale model of red blood cells (RBCs) to represent different sickle cell morphologies based on a simulated annealing procedure and experimental observations. We quantified cell distortion using asphericity and elliptical shape factors, and the results were consistent with a medical image analysis. We then studied the rheology and dynamics of sickle RBC suspensions under constant shear and in a tube. In shear flow, the transition from shear-thinning to shear-independent flow revealed a profound effect of cell membrane stiffening during deoxygenation, with granular RBC shapes leading to the greatest viscosity. In tube flow, the increase of flow resistance by granular RBCs was also greater than the resistance of blood flow with sickle-shape RBCs. However, no occlusion was observed in a straight tube under any conditions unless an adhesive dynamics model was explicitly incorporated into simulations that partially trapped sickle ABCs, which led to full occlusion in some cases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据