4.5 Article

Shear-Induced Resistance to Neutrophil Activation via the Formyl Peptide Receptor

期刊

BIOPHYSICAL JOURNAL
卷 102, 期 8, 页码 1804-1814

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2012.03.053

关键词

-

资金

  1. National Institutes of Health [HL018128]

向作者/读者索取更多资源

The application of fluid shear stress on leukocytes is critical for physiological functions including initial adhesion to the endothelium, the formation of pseudopods, and migration into tissues. The formyl peptide receptor (FPR) on neutrophils, which binds to formyl-methionyl-leucyl-phenylalanine (fMLP) and plays a role in neutrophil chemotaxis, has been implicated as a fluid shear stress sensor that controls pseudopod formation. The role of shear forces on earlier indicators of neutrophil activation, such as L-selectin shedding and alpha(M)beta(2) integrin activation, remains unclear. Here, human neutrophils exposed to uniform shear stress (0.1-4.0 dyn/cm(2)) in a cone-and-plate viscometer for 1-120 min showed a significant reduction in both alpha(M)beta(2) integrin activation and L-selectin shedding after stimulation with 0.5 nM of fMLP. Neutrophil resistance to activation was directly linked to fluid shear stress, as the response increased in a shear stress force-and time-dependent manner. Significant shear-induced loss of FPR surface expression on neutrophils was observed, and high-resolution confocal microscopy revealed FPR internalized within neutrophils. These results suggest that physiological shear forces alter neutrophil activation via FPR by reducing L-selectin shedding and alpha(M)beta(2) integrin activation in the presence of soluble ligand.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据