4.5 Article

Elimination of Thermodynamically Infeasible Loops in Steady-State Metabolic Models

期刊

BIOPHYSICAL JOURNAL
卷 100, 期 3, 页码 544-553

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2010.12.3707

关键词

-

资金

  1. National Institutes of Health [R01 GM068837, R01 GM57089]
  2. National Science Foundation [DGE-0504645]

向作者/读者索取更多资源

The constraint-based reconstruction and analysis (COBRA) framework has been widely used to study steadystate flux solutions in genome-scale metabolic networks. One shortcoming of current COBRA methods is the possible violation of the loop law in the computed steady-state flux solutions. The loop law is analogous to Kirchhoff's second law for electric circuits, and states that at steady state there can be no net flux around a closed network cycle. Although the consequences of the loop law have been known for years, it has been computationally difficult to work with. Therefore, the resulting loop-law constraints have been overlooked. Here, we present a general mixed integer programming approach called loopless COBRA (II-COBRA), which can be used to eliminate all steady-state flux solutions that are incompatible with the loop law. We apply this approach to improve flux predictions on three common COBRA methods: flux balance analysis, flux variability analysis, and Monte Carlo sampling of the flux space. Moreover, we demonstrate that the imposition of loop-law constraints with II-COBRA improves the consistency of simulation results with experimental data. This method provides an additional constraint for many COBRA methods, enabling the acquisition of more realistic simulation results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据