4.5 Article

Excitation Energy Transfer and Trapping in Higher Plant Photosystem II Complexes with Different Antenna Sizes

期刊

BIOPHYSICAL JOURNAL
卷 100, 期 9, 页码 2094-2103

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2011.03.049

关键词

-

资金

  1. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
  2. Earth and Life Science Division of the NWO
  3. Partenariats Hubert Curien

向作者/读者索取更多资源

We performed picosecond fluorescence measurements on well-defined Photosystem II (PSII) supercomplexes from Arabidopsis with largely varying antenna sizes. The average excited-state lifetime ranged from 109 ps for PSII core to 158 ps for the largest C2S2M2 complex in 0.01% alpha-DM. Excitation energy transfer and trapping were investigated by coarse-grained modeling of the fluorescence kinetics. The results reveal a large drop in free energy upon charge separation (>700 cm(-1)) and a slow relaxation of the radical pair to an irreversible state (similar to 150 ps). Somewhat unexpectedly, we had to reduce the energy-transfer and charge-separation rates in complexes with decreasing size to obtain optimal fits. This strongly suggests that the antenna system is important for plant PSII integrity and functionality, which is supported by biochemical results. Furthermore, we used the coarse-grained model to investigate several aspects of PSII functioning. The excitation trapping time appears to be independent of the presence/absence of most of the individual contacts between light-harvesting complexes in PSII supercomplexes, demonstrating the robustness of the light-harvesting process. We conclude that the efficiency of the nonphotochemical quenching process is hardly dependent on the exact location of a quencher within the supercomplexes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据