4.7 Article

In vitro analysis of the potential cartilage implant bacterial nanocellulose using the bovine cartilage punch model

期刊

CELLULOSE
卷 26, 期 1, 页码 631-645

出版社

SPRINGER
DOI: 10.1007/s10570-019-02260-z

关键词

Bovine cartilage punch model; Bacterial nanocellulose; Regeneration model; Articular cartilage; Implant push-out force

资金

  1. Bundesministerium fur Bildung und Forschung (BMBF) [13N12601, 0315577C]

向作者/读者索取更多资源

Biocompatible bacterial nanocellulose (BNC) shows high potential as wound dressing and dura mater replacement, and even for the development of blood vessel or cartilage implants. Thus, the regenerative capacity of BNC implants was analyzed using a standardized bovine cartilage punch model. Cartilage rings with an outer diameter of 6 mmand an inner defect diameter of 2 mm were derived from the trochlear groove (femur-patellar articulation site). BNC implants were cultured inside the cartilage rings for up to 12 weeks. Cartilage-BNC-constructs were then evaluated by histology (hematoxylin/eosin; safranin O), immunohistology (aggrecan, collagens 1 and 2), and for protein content, mRNA expression, and push-out force of the implants. Cartilage-BNC-constructs displayed vital chondrocytes (>= 90% until week 9; > 80% until 12 weeks), preserved matrix integrity during culture, limited loss of matrix-bound proteoglycan from 'host' cartilage or cartilage-BNC-interface, and constant release of proteoglycans into the culture supernatant. In addition, the content of the matrix protein collagen 2 in cartilage and cartilage-BNC-interface was approximately constant over time (with very limited quantities of collagen 1). Interestingly, BNC implants showed: (1) cell colonization of the implant; (2) progressively increasing mRNA levels for the proteoglycan aggrecan and collagen 2 (max. fivefold); and (3) significantly increasing push-out forces during culture (max. 1.6-fold). Retained tissue integrity and progressively increasing chondrogenic differentiation in implant and carti-lage-implant-interface suggest beginning cartilage regeneration in the BNC in the present model and indicate a high potential of BNC as a cartilage replacement material. Thus, the present model appears suitable to predict the in vivo performance of cartilage replacementmaterials (e.g., BNC) for tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据