4.5 Article

The Signal Transfer from the Receptor NpSRII to the Transducer NpHtrIl Is Not Hampered by the D75N Mutation

期刊

BIOPHYSICAL JOURNAL
卷 100, 期 9, 页码 2275-2282

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2011.03.017

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [SFB 431/P18, EN87/14-2]
  2. Max Planck Society

向作者/读者索取更多资源

Sensory rhodopsin II (NpSRII) is a phototaxis receptor of Natronomonas pharaonis that performs its function in complex with its cognate transducer (NpHtrII). Upon light activation NpSRII triggers by means of NpHtrII a signal transduction chain homologous to the two component system in eubacterial chemotaxis. The D75N mutant of NpSRII, which lacks the blue-shifted M intermediate and therefore exhibits a significantly faster photocycle compared to the wild-type, mediates normal phototaxis responses demonstrating that deprotonation of the Schiff base is not a prerequisite for transducer activation. Using site-directed spin labeling and time resolved electron paramagnetic-resonance spectroscopy, we show that the mechanism revealed for activation of the wild-type complex, namely an outward tilt motion of the cytoplasmic part of the receptor helix F and a concomitant rotation of the transmembrane transducer helix TM2, is also valid for the D75N variant. Apparently, the D75N mutation shifts the ground state conformation of NpSRII-D75N and its cognate transducer into the direction of the signaling state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据