4.8 Article

Double-Shell Architectures of ZnFe2O4 Nanosheets on ZnO Hollow Spheres for High-Performance Gas Sensors

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 7, 期 32, 页码 17811-17818

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b04118

关键词

ZnO/ZnFe2O4; double-shell; heterostructure; gas sensor; acetone

资金

  1. National Nature Science Foundation of China [61374218, 61134010, 61327804]
  2. Program for Chang Jiang Scholars and Innovative Research Team in University [IRT13018]
  3. National High-Tech Research and Development Program of China (863 Program) [2013AA030902, 2014AA06A505]
  4. Jilin University [2015094]

向作者/读者索取更多资源

In this study, double-shell composites consisting of inner ZnO hollow microspheres (ZHS) surrounded by outer ZnFe2O4 nanosheets were successfully synthesized. The growth of the ultrathin ZnFe2O4 nanosheets (-10 nm) on the ZHS outer surface was carried out at room temperature via solution reactions in order to generate a double-shell configuration that could provide a large surface area. As a proof-of-concept demonstration of the design, a comparative sensing investigation between the sensors based on the asobtained ZnO/ZnFe2O4 composites and its two individual components (ZnO hollow spheres and ZnFe2O4 nanosheets) was performed. As expected, the response of the ZnFe2O4-decorated ZnO composites to 100 ppm acetone was about 3 times higher than that of initial ZnO microspheres. Moreover, a dramatic reduction of response/recover time has been achieved at different operating temperature. Such favorable sensing performances endow these ZnO/ZnFe2O4 heterostructures with a potential application in gas sensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据