4.6 Article

Federated Learning-Based Computation Offloading Optimization in Edge Computing-Supported Internet of Things

期刊

IEEE ACCESS
卷 7, 期 -, 页码 69194-69201

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2019.2919736

关键词

Federated learning; computation offloading; IoT; edge computing

向作者/读者索取更多资源

Recently, smart cities, smart homes, and smart medical systems have challenged the functionality and connectivity of the large-scale Internet of Things (IoT) devices. Thus, with the idea of offloading intensive computing tasks from them to edge nodes (ENs), edge computing emerged to supplement these limited devices. Benefit from this advantage, IoT devices can save more energy and still maintain the quality of the services they should provide. However, computational offload decisions involve federation and complex resource management and should be determined in the real-time face to dynamic workloads and radio environments. Therefore, in this work, we use multiple deep reinforcement learning (DRL) agents deployed on multiple edge nodes to indicate the decisions of the IoT devices. On the other hand, with the aim of making DRL-based decisions feasible and further reducing the transmission costs between the IoT devices and edge nodes, federated learning (FL) is used to train DRL agents in a distributed fashion. The experimental results demonstrate the effectiveness of the decision scheme and federated learning in the dynamic IoT system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据