4.7 Article

Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 142, 期 21, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4919548

关键词

-

资金

  1. Austrian Science Fund (FWF): START Project [Y 631-N27]
  2. CZE-Aus Mobility Grant [7AMB14AT007, CZ 05/2014]
  3. Czech Science Foundation (GACR) [14-25752S]
  4. GAUK [2940214]
  5. BBSRC
  6. Austrian Science Fund (FWF) [Y631] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Forster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据