4.5 Article

310-Helix Conformation Facilitates the Transition of a Voltage Sensor S4 Segment toward the Down State

期刊

BIOPHYSICAL JOURNAL
卷 100, 期 6, 页码 1446-1454

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2011.02.003

关键词

-

资金

  1. European Research Council [209825]
  2. Swedish Foundation for Strategic Research
  3. Swedish Research Council
  4. European Research Council (ERC) [209825] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

The activation of voltage-gated ion channels is controlled by the S4 helix, with arginines every third residue. The x-ray structures are believed to reflect an open-inactivated state, and models propose combinations of translation, rotation, and tilt to reach the resting state. Recently, experiments and simulations have independently observed occurrence of 3(10)-helix in S4. This suggests S4 might make a transition from alpha- to 3(10)-helix in the gating process. Here, we show 3(10)-helix structure between 01 and R3 in the S4 segment of a voltage sensor appears to facilitate the early stage of the motion toward a down state. We use multiple microsecond-steered molecular simulations to calculate the work required for translating S4 both as a-helix and transformed to 3(10)-helix. The barrier appears to be caused by salt-bridge reformation simultaneous to R4 passing the F233 hydrophobic lock, and it is almost a factor-two lower with 3(10)-helix. The latter facilitates translation because R2/R3 line up to face E183/E226, which reduces the requirement to rotate S4. This is also reflected in a lower root mean-square deviation distortion of the rest of the voltage sensor. This supports the 3(10) hypothesis, and could explain some of the differences between the open-inactivated- versus activated-states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据