4.5 Article

The Role of Cell Contraction and Adhesion in Dictyostelium Motility

期刊

BIOPHYSICAL JOURNAL
卷 99, 期 1, 页码 50-58

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2010.03.057

关键词

-

资金

  1. National Institutes of Health [P01 GM078586]
  2. National Science Foundation [DMS 0553487]
  3. German Academic Exchange Service [fellowship]

向作者/读者索取更多资源

The crawling motion of Dictyostelium discoideum on substrata involves a number of coordinated events including cell contractions and cell protrusions. The mechanical forces exerted on the substratum during these contractions have recently been quantified using traction force experiments. Based on the results from these experiments, we present a biomechanical model of the contraction phase of Dictyostelium discoideum motility with an emphasis on the adhesive properties of the cell-substratum contact. Our model assumes that the cell contracts at a constant rate and is bound to the substratum by adhesive bridges that are modeled as elastic springs. These bridges are established at a spatially uniform rate while detachment occurs at a spatially varying, load-dependent rate. Using Monte Carlo simulations and assuming a rigid substratum, we find that the cell speed depends only weakly on the detachment kinetics of the cell-substratum interface, in agreement with experimental data. By varying the parameters that control the adhesive and contractile properties of the cell, we are able to make testable predictions. We also extend our model to include a flexible substrate and show that our model is able to produce substratum deformations and force patterns that are quantitatively and qualitatively in agreement with experimental data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据