4.5 Article

Water under the BAR

期刊

BIOPHYSICAL JOURNAL
卷 99, 期 6, 页码 1783-1790

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2010.06.074

关键词

-

资金

  1. National Institutes of Health [R01-GM063796]
  2. National Science Foundation

向作者/读者索取更多资源

Many cellular processes require the generation of highly curved regions of cell membranes by interfacial membrane proteins. A number of such proteins are now known, and several mechanisms of curvature generation have been suggested, but so far a quantitative understanding of the importance of the various potential mechanisms remains elusive. Following previous theoretical work, we consider the electrostatic attraction that underlies the scaffold mechanism of membrane bending in the context of the N-BAR domain of amphiphysin. Analysis of atomistic molecular dynamics simulations reveals considerable water between the membrane and the positively charged concave face of the BAR, even when it is tightly bound to highly curved membranes. This results in significant screening of electrostatic interactions, suggesting that electrostatic attraction is not the main driving force behind curvature sensing, supporting recent experimental work. These results also emphasize the need for care when building coarse-grained models of protein-membrane interactions. These results are emphasized by simulations of oligomerized amphiphysin N-BARs at the atomistic and coarse-grained level. In the coarse-grained simulations, we find a strong dependence of the induced curvature on the dielectric screening.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据