4.5 Article

A Three-State Model with Loop Entropy for the Overstretching Transition of DNA

期刊

BIOPHYSICAL JOURNAL
卷 99, 期 2, 页码 578-587

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2010.04.046

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [NE 810/7, SFB 863]

向作者/读者索取更多资源

We introduce a three-state model for a single DNA chain under tension that distinguishes among B-DNA, S-DNA, and M (molten or denatured) segments and at the same time correctly accounts for the entropy of molten loops, characterized by the exponent c in the asymptotic expression S similar to -c In n for the entropy of a loop of length n. Force extension curves are derived exactly by employing a generalized Poland-Scheraga approach and then compared to experimental data. Simultaneous fitting to force-extension data at room temperature and to the denaturation phase transition at zero force is possible and allows us to establish a global phase diagram in the force-temperature plane. Under a stretching force, the effects of the stacking energy (entering as a domain-wall energy between paired and unpaired bases) and the loop entropy are separated. Therefore, we can estimate the loop exponent c independently from the precise value of the stacking energy. The fitted value for c is small, suggesting that nicks dominate the experimental force extension traces of natural DNA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据