4.5 Article

MD Simulations of the dsRBP DGCR8 Reveal Correlated Motions that May Aid pri-miRNA Binding

期刊

BIOPHYSICAL JOURNAL
卷 99, 期 1, 页码 248-256

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2010.04.010

关键词

-

资金

  1. Pennsylvania State University

向作者/读者索取更多资源

Over the past decade, microRNAs (miRNAs) have been shown to affect gene regulation by basepairing with messenger RNA, and their misregulation has been directly linked with cancer. DGCR8, a protein that contains two dsRNA-binding domains (dsRBDs) in tandem, is vital for nuclear maturation of primary miRNAs (pri-miRNAs) in connection with the RNase Ill enzyme Drosha. The crystal structure of the DGCR8 Core (493-720) shows a unique, well-ordered structure of the linker region between the two dsRBDs that differs from the flexible linker connecting the two dsRBDs in the antiviral response protein, PKR. To better understand the interfacial interactions between the two dsRBDs, we ran extensive MD simulations of isolated dsRBDs (505-583 and 614-691) and the Core. The simulations reveal correlated reorientations of the two domains relative to one another, with the well-ordered linker and C-terminus serving as a pivot. The results demonstrate that motions at the domain interface dynamically impact the conformation of the RNA-binding surface and may provide an adaptive separation distance that is necessary to allow interactions with a variety of different pri-miRNAs with heterogeneous structures. These results thus provide an entry point for further in vitro studies of the potentially unique RNA-binding mode of DGCR8.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据