4.5 Article

A Wnt Oscillator Model for Somitogenesis

期刊

BIOPHYSICAL JOURNAL
卷 98, 期 6, 页码 943-950

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2009.11.039

关键词

-

资金

  1. Danish Research Foundation
  2. Villum Kann Rasmussen Foundation

向作者/读者索取更多资源

We propose a model for the segmentation clock invertebrate somitogenesis, based on the Wnt signaling pathway. The core of the model is a negative feedback loop centered around the Axin2 protein. Axin2 is activated by beta-catenin, which in turn is degraded by a complex of GSK3 beta and Axin2. The model produces oscillatory states of the involved constituents with typical time periods of a few hours (ultradian oscillations). The oscillations are robust to changes in parameter values and are often spiky, where low concentration values of beta-catenin are interrupted by sharp peaks. Necessary for the oscillations is the saturated degradation of Axin2. Somite formation in chick and mouse embryos is controlled by a spatial Wnt gradient which we introduce in the model through a time-dependent decrease in Wnt3a ligand level. We find that the oscillations disappear as the ligand concentration decreases, in agreement with observations on embryos.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据