4.6 Article

Ab Initio Horizon-scale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds

期刊

ASTROPHYSICAL JOURNAL LETTERS
卷 896, 期 1, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.3847/2041-8213/ab9532

关键词

Galactic center; Magnetohydrodynamics; Astrophysical fluid dynamics; Astrophysical black holes; Accretion; General relativity; Wolf-Rayet stars; Stellar winds; Magnetohydrodynamical simulations

资金

  1. Gordon and Betty Moore Foundation [GBMF7392]
  2. NSF [NSF PHY-1748958, AST-1715054, AST-1715277, TG-AST090038, TGAST170012]
  3. Simons Foundation

向作者/读者索取更多资源

We present 3D general relativistic magnetohydrodynamic (GRMHD) simulations of the accretion flow surrounding Sagittarius A* that are initialized using larger-scale MHD simulations of the similar to 30 Wolf-Rayet (WR) stellar winds in the Galactic center. The properties of the resulting accretion flow on horizon scales are set not by ad hoc initial conditions but by the observationally constrained properties of the WR winds with limited free parameters. For this initial study we assume a non-spinning black hole. Our simulations naturally produce a similar to 10(-8) M yr(-1) accretion rate, consistent with previous phenomenological estimates. We find that a magnetically arrested flow is formed by the continuous accretion of coherent magnetic field being fed from large radii. Near the event horizon, the magnetic field is so strong that it tilts the gas with respect to the initial angular momentum and concentrates the originally quasi-spherical flow to a narrow disk-like structure. We also present 230 GHz images calculated from our simulations where the inclination angle and physical accretion rate are not free parameters but are determined by the properties of the WR stellar winds. The image morphology is highly time variable. Linear polarization on horizon scales is coherent with weak internal Faraday rotation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据