4.8 Article

Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries

期刊

ENERGY STORAGE MATERIALS
卷 26, 期 -, 页码 448-456

出版社

ELSEVIER
DOI: 10.1016/j.ensm.2019.11.018

关键词

Garnet nanofibers; Composite solid electrolyte; Percolated network; All-solid-state batteries; Rate capability

资金

  1. Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-EE0007806]

向作者/读者索取更多资源

Composite solid electrolytes (CSEs), which are composed of inorganic fillers and organic polymers, show improved safety and suppressed lithium dendrite growth in Li-metal batteries, as compared to flammable liquid electrolytes. However, the performance of current CSEs is limited by the agglomeration effect, with low content of inorganic Li+-conducting fillers and ineffective Li+ transport between the inorganic fillers and the polymer matrix. To address these challenges, a new type of CSE composed of silane-modified Li6.28La3Al0.24Zr2O12 (s@LLAZO) nanofibers and poly(ethylene glycol) diacrylate (PEGDA) is developed. Employment of the silane coupling agent, 3-(trimethoxysilyl)propyl methacrylate, enables the incorporation of a high content of LLAZO nanofibers (up to 70 wt%) with the polymer matrix and results in a well-percolated, three-dimensional LLAZO network fully embedded in the PEGDA matrix. Consequently, the silane coupling agent successfully eliminates the agglomeration effect, which ensures higher ionic conductivity, larger lithium transference number, wider electrochemical stability window, and better cycling stability for s@LLZAO-PEGDA CSEs. Excellent cycling stability and extraordinarily high rate capability (up to 10C) are demonstrated in the all-solid-state Li-metal batteries with LiFePO4 and high-voltage Li[Ni1/3Mn1/3Co1/3]O-2 cathodes at ambient temperature. This novel design of CSEs with s@LLAZO nanofibers paves the way for a new generation of improved functioning all-solid-state Li-metal batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据