4.7 Article

Real-Time Detection and Filtering of Radio Frequency Interference Onboard a Spaceborne Microwave Radiometer: The CubeRRT Mission

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTARS.2020.2978016

关键词

Microwave radiometry; Payloads; Bandwidth; Space vehicles; Filtering; Microwave filters; Temperature measurement; Microwave radiometry; passive microwave remo-te sensing; radio frequency interference (RFI)

资金

  1. In-space Validation of Earth Science Technologies (InVEST) program of NASA's Earth Science Technology Office (ESTO) [NNX16AC25G]
  2. Jet Propulsion Laboratory, California Institute of Technology
  3. National Aeronautics and Space Administration [80NM0018D0004]

向作者/读者索取更多资源

The Cubesat radiometer radio frequency interference technology validation mission (CubeRRT) was developed to demonstrate real-time onboard detection and filtering of radio frequency interference (RFI) for wide bandwidth microwave radiometers. CubeRRT's key technology is its radiometer digital backend (RDB) that is capable of measuring an instantaneous bandwidth of 1 GHz and of filtering the input signal into an estimated total power with and without RFI contributions. CubeRRT's onboard RFI processing capability dramatically reduces the volume of data that must be downlinked to the ground and eliminates the need for ground-based RFI processing. RFI detection is performed by resolving the input bandwidth into 128 frequency subchannels, with the kurtosis of each subchannel and the variations in power across frequency used to detect nonthermal contributions. RFI filtering is performed by removing corrupted frequency subchannels prior to the computation of the total channel power. The 1 GHz bandwidth input signals processed by the RDB are obtained from the payload's antenna (ANT) and radiometer front end (RFE) subsystems that are capable of tuning across RF center frequencies from 6 to 40 GHz. The CubeRRT payload was installed into a 6U spacecraft bus provided by Blue Canyon Technologies that provides spacecraft power, communications, data management, and navigation functions. The design, development, integration and test, and on-orbit operations of CubeRRT are described in this article. The spacecraft was delivered on March 22nd, 2018 for launch to the International Space Station (ISS) on May 21st, 2018. Since its deployment from the ISS on July 13th, 2018, the CubeRRT RDB has completed more than 5000 h of operation successfully, validating its robustness as an RFI processor. Although CubeRRT's RFE subsystem ceased operating on September 8th, 2018, causing the RDB input thereafter to consist only of internally generated noise, CubeRRT's key RDB technology continues to operate without issue and has demonstrated its capabilities as a valuable subsystem for future radiometry missions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据