4.7 Article

An Efficient Deep Unsupervised Superresolution Model for Remote Sensing Images

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTARS.2020.2984589

关键词

Deep learning; remote sensing; superresolution (SR)

向作者/读者索取更多资源

Superresolution (SR) has provided an effective solution to the increasing need for high-resolution images in remote sensing applications. Among various SR methods, deep learning-based SR (DLSR) has made a significant breakthrough. However, supervised DLSR methods require a considerable amount of training data, which is hardly available in the remote sensing field. To address this issue, some research works have recently proposed and revealed the capability of deep learning in unsupervised SR. This article presents an efficient unsupervised SR (EUSR) deep learning model using dense skip connections, which boosts the reconstruction performance in parallel with the reduction of computational burden. To do this, several blocks containing densely connected convolutional layers are implemented to increase the depth of the model. Some skip connections also concatenate feature maps of different blocks to enable better SR performance. Moreover, a bottle-neck block abstracts the feature maps in fewer feature maps to remarkably reduce the computational burden. According to our experiments, the proposed EUSR leads to better results than the state-of-the-art DLSR method in terms of reconstruction quality with less computational burden. Furthermore, results indicate that the EUSR is more robust than its rival in dealing with images of different classes and larger sizes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据