4.5 Article

Vortex-Induced Injectable Silk Fibroin Hydrogels

期刊

BIOPHYSICAL JOURNAL
卷 97, 期 7, 页码 2044-2050

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2009.07.028

关键词

-

资金

  1. National Institutes of Health [P41 EB002520]
  2. The Air Force Office of Scientific Research

向作者/读者索取更多资源

A novel, to our knowledge, technique was developed to control the rate of beta-sheet formation and resulting hydrogelation kinetics of aqueous, native silk solutions. Circular dichroism spectroscopy indicated that vortexing aqueous solutions of silkworm silk lead to a transition from an overall protein structure that is initially rich in random coil to one that is rich in beta-sheet content. Dynamic oscillatory rheology experiments collected under the same assembly conditions as the circular dichroism experiments indicated that the increase in beta-sheet content due to intramolecular conformational changes and intermolecular self-assembly of the silk fibroin was directly correlated with the subsequent changes in viscoelastic properties due to hydrogelation. Vortexing low-viscosity silk solutions lead to orders-of-magnitude increase in the complex shear modulus, G*, and formation of rigid hydrogels (G* approximate to 70 kPa for 5.2 wt % protein concentration). Vortex-induced, beta-sheet-rich silk hydrogels consisted of permanent, physical, intermolecular crosslinks. The hydrogelation kinetics could be controlled easily (from minutes to hours) by changing the vortex time, assembly temperature and/or protein concentration, providing a useful timeframe for cell encapsulation. The stiffness of preformed hydrogels recovered quickly, immediately after injection through a needle, enabling the potential use of these systems for injectable cell delivery scaffolds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据