4.5 Article

Thermodynamic Pathways to Genome Spatial Organization in the Cell Nucleus

期刊

BIOPHYSICAL JOURNAL
卷 96, 期 6, 页码 2168-2177

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2008.12.3919

关键词

-

资金

  1. MIUR-FIRB [RBNE01S29H, MRTN-CT-2003-504712]

向作者/读者索取更多资源

The architecture of the eukaryotic genome is characterized by a high degree of spatial organization. Chromosomes occupy preferred territories correlated to their state of activity and, yet, displace their genes to interact with remote sites in complex patterns requiring the orchestration of a huge number of DNA loci and molecular regulators. Far from random, this organization serves crucial functional purposes, but its governing principles remain elusive. By computer simulations of a statistical mechanics model, we show how architectural patterns spontaneously arise from the physical interaction between soluble binding molecules and chromosomes via collective thermodynamics mechanisms. Chromosomes colocalize, loops and territories form, and find their relative positions as stable thermodynamic states. These are selected by thermodynamic switches, which are regulated by concentrations/affinity of soluble mediators and by number/location of their attachment sites along chromosomes. Our thermodynamic switch model of nuclear architecture, thus, explains on quantitative grounds how well-known cell strategies of upregulation of DNA binding proteins or modification of chromatin structure can dynamically shape the organization of the nucleus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据