4.5 Article

Cell Traction Forces Direct Fibronectin Matrix Assembly

期刊

BIOPHYSICAL JOURNAL
卷 96, 期 2, 页码 729-738

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2008.10.009

关键词

-

资金

  1. National Institutes of Health [DE13079, AI061042, HLO88203]
  2. Department of Defense [BC06911]
  3. The Johns Hopkins University Funds for Medical Discovery

向作者/读者索取更多资源

Interactions between cells and the surrounding matrix are critical to the development and engineering of tissues. We have investigated the role of cell-derived traction forces in the assembly of extracellular matrix using what we believe is a novel assay that allows for simultaneous measurement of traction forces and fibronectin fibril growth at discrete cell-matrix attachment sites. NIH3T3 cells were plated onto arrays of deformable cantilever posts for 2-24 h. Data indicate that developing fibril orientation is guided by the direction of the traction force applied to that fibril. In addition, cells initially establish a spatial distribution of traction forces that is largest at the cell edge and decreases toward the cell center. This distribution progressively shifts from a predominantly peripheral pattern to a more uniform pattern as compressive strain at the cell perimeter decreases with time. The impact of these changes on fibrillogenesis was tested by treating cells with blebbistatin or calyculin A to tonically block or augment, respectively, myosin II activity. Both treatments blocked the inward translation of traction forces, the dissipation of compressive strain, and fibronectin fibrillogenesis overtime. These data indicate that dynamic spatial and temporal changes in traction force and local strain may contribute to successful matrix assembly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据