4.5 Article

Precision Surface-Coupled Optical-Trapping Assay with One-Basepair Resolution

期刊

BIOPHYSICAL JOURNAL
卷 96, 期 7, 页码 2926-2934

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2008.12.3933

关键词

-

向作者/读者索取更多资源

The most commonly used optical-trapping assays are coupled to surfaces, yet such assays lack atomic-scale (similar to 0.1 nm) spatial resolution due to drift between the surface and trap. We used active stabilization techniques to minimize surface motion to 0.1 nm in three dimensions and decrease multiple types of trap laser noise (pointing, intensity, mode, and polarization). As a result, we achieved nearly the thermal limit (<0.05 nm) of bead detection over abroad range of trap stiffness (k(T) = 0.05-0.5 pN/nm) and frequency (Delta f = 0.03-100 Hz). We next demonstrated sensitivity to one-basepair (0.34-nm) steps along DNA in a surface-coupled assay at moderate force (6 pN). Moreover, basepair stability was achieved immediately after substantial (3.4 pN) changes in force. Active intensity stabilization also led to enhanced force precision (similar to 0.01%) that resolved 0.1-pN force-induced changes in DNA hairpin unfolding dynamics. This work brings the benefit of atomic-scale resolution, currently limited to dual-beam trapping assays, along with enhanced force precision to the widely used, surface-coupled optical-trapping assay.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据