4.5 Article

Computational Analysis of Dynamical Responses to the Intrinsic Pathway of Programmed Cell Death

期刊

BIOPHYSICAL JOURNAL
卷 97, 期 2, 页码 415-434

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2009.04.053

关键词

-

向作者/读者索取更多资源

Multicellular organisms shape development and remove aberrant cells by programmed cell death (apoptosis). Because defective cell death (too little or too much) is implicated in various diseases (like cancer and autoimmunity), understanding how apoptosis is regulated is an important goal of molecular cell biologists. To this end, we propose a mathematical model of the intrinsic apoptotic pathway that captures three key dynamical features: a signal threshold to elicit cell death, irreversible commitment to the response, and a time delay that is inversely proportional to signal strength. Subdividing the intrinsic pathway into three modules (initiator, amplifier, executioner), we use computer simulation and bifurcation theory to attribute signal threshold and time delay to positive feedback in the initiator module and irreversible commitment to positive feedback in the executioner module. The model accounts for the behavior of mutants deficient in various genes and is used to design experiments that would test its basic assumptions. Finally, we apply the model to study p53-induced cellular responses to DNA damage. Cells first undergo cell cycle arrest and DNA repair, and then apoptosis if the damage is beyond repair. The model ascribes this cell-fate transition to a transformation of p53 from helper to killer forms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据