4.5 Article

Electrostatic Regulation of Genome Packaging in Human Hepatitis B Virus

期刊

BIOPHYSICAL JOURNAL
卷 96, 期 8, 页码 3065-3073

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2009.01.009

关键词

-

资金

  1. U.S. Department of Energy [DE-FG0206ER46296, DE-AC03-76SF0009]
  2. National Energy Research Scientific Computing Center (NERSC)
  3. Directorate For Engineering [852353] Funding Source: National Science Foundation
  4. Div Of Chem, Bioeng, Env, & Transp Sys [852353] Funding Source: National Science Foundation

向作者/读者索取更多资源

Hepatitis B virus (HBV) is a contagious human pathogen causing liver diseases such as cirrhosis and hepatocellular carcinoma. An essential step during HBV replication is packaging of a pregenomic (pg) RNA within the capsid of core antigens (HBcAgs) that each contains a flexible C-terminal tail rich in arginine residues. Mutagenesis experiments suggest that pgRNA encapsidation hinges on its strong electrostatic interaction with oppositely charged C-terminal tails of the HBcAgs, and that the net charge of the capsid and C-terminal tails determines the genome size and nucleocapsid stability. Here, we elucidate the biophysical basis for electrostatic regulation of pgRNA packaging in HBV by using a coarse-grained molecular model that explicitly accounts for all nonspecific interactions among key components within the nucleocapsid. We find that for mutants with variant C-terminal length, an optimal genome size minimizes an appropriately defined thermodynamic free energy. The thermodynamic driving force of RNA packaging arises from a combination of electrostatic interactions and molecular excluded-volume effects. The theoretical predictions of the RNA length and nucleocapsid internal structure are in good agreement with available experiments for the wild-type HBV and mutants with truncated HBcAg C-termini.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据