4.5 Article

E. coli Superdiffusion and Chemotaxis-Search Strategy, Precision, and Motility

期刊

BIOPHYSICAL JOURNAL
卷 97, 期 4, 页码 946-957

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2009.04.065

关键词

-

向作者/读者索取更多资源

Escherichia coli motion is characterized by a sequence of consecutive tumble-and-swim events. In the absence of chemical gradients, the length of individual swims is commonly believed to be distributed exponentially. However, recently there has been experimental indication that the swim-length distribution has the form of a power-law, suggesting that bacteria might perform superdiffusive Levy-walk motion. In E coli, the power-law behavior can be induced through stochastic fluctuations in the level of CheR, one of the key enzymes in the chemotaxis signal transmission pathway. We use a mathematical model of the chemotaxis signaling pathway to study the influence of these fluctuations on the E. coli behavior in the absence and presence of chemical gradients. We find that the population with fluctuating CheR performs Levy-walks in the absence of chemoattractants, and therefore might have an advantage in environments where nutrients are sparse. The more efficient search strategy in sparse environments is accompanied by a generally larger motility, also in the presence of chemoattractants. The tradeoff of this strategy is a reduced precision in sensing and following gradients, as well as a slower adaptation to absolute chemoattractant levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据