4.5 Article

Biophysical Characterization of Styryl Dye-Membrane Interactions

期刊

BIOPHYSICAL JOURNAL
卷 97, 期 1, 页码 101-109

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2009.04.028

关键词

-

资金

  1. Howard Hughes Medical Institute Funding Source: Medline
  2. NIMH NIH HHS [MH 61876, R01 MH061876] Funding Source: Medline

向作者/读者索取更多资源

Styryl dyes (also referred to as FM dyes) become highly fluorescent upon binding to membranes and are often used to study synaptic vesicle recycling in neurons. To date, however, no direct comparisons of the fluorescent properties, or time-resolved (millisecond) measurements of dye-membrane binding and unbinding reactions, for all members of this family of probes have been reported. Here, we compare the fluorescence intensities of each member of the FM dye family when bound to membranes. This analysis included SGC5, a new lipophilic fluorescent dye with a unique structure. Fluorescence intensities depended on the length of the lipophilic tail of each dye, with a rank order as follows: SGC5 > FM1-84 > FM1-43 > Synapto-Green C3 > FM2-10/FM4-64/FM5-95. Stopped-flow measurements revealed that dye hydrophobicity determined the affinity and departitioning rates for dye-membrane interactions. All of the dyes dissociated from membranes on the millisecond time-scale, which is orders of magnitude faster than the overall destaining rate (timescale of seconds) of these dyes from presynaptic boutons. Departitioning kinetics were faster at higher temperatures, but were unaffected by pH or cholesterol. The data reported here aid interpretation of dye-release kinetics from single synaptic vesicles, and indicate that these probes dissociate from membranes on more rapid timescales than previously appreciated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据