4.5 Article

Protein Stabilization and the Hofmeister Effect: The Role of Hydrophobic Solvation

期刊

BIOPHYSICAL JOURNAL
卷 97, 期 9, 页码 2595-2603

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2009.08.029

关键词

-

资金

  1. Department of Industry, Tourism and Trade of the Government
  2. Innovation Technology Department of Bizkaia County
  3. Ministerio de Ciencia y Tecnologia [CTQ2006-09101/BQU, CSD2008-00005]
  4. Ramon y Cajal program

向作者/读者索取更多资源

Using the IGg binding domain of protein L from Streptoccocal magnus (ProtL) as a case study, we investigated how the anions of the Hofmeister series affect protein stability. To that end, a suite of lysine-to-glutamine modifications were obtained and structurally and thermodynamically characterized. The changes in stability introduced with the mutation are related to the solvent-accessible area of the side chain, specifically to the solvation of the nonpolar moiety of the residue. The thermostability for the set of ProtL mutants was determined in the presence of varying concentrations (0-1 M) of six sodium salts from the Hofmeister series: sulfate, phosphate, fluoride, nitrate, perchlorate, and thiocyanate. For kosmotropic anions (sulfate, phosphate, and fluoride), the stability changes induced by the cosolute (encoded in m(3) = delta Delta G(0)/delta C-3) are proportional to the surface changes introduced with the mutation. In contrast, the m(3) values measured for chaotropic anions are much more independent of such surface modifications. Our results are consistent with a model in which the increase in the solution surface tension induced by the anion stabilizes the folded conformation of the protein. This contribution complements the nonspecific and weak interactions between the ions and the protein backbone that shift the equilibrium toward the unfolded state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据