4.7 Review

Protein electrostatics: From computational and structural analysis to discovery of functional fingerprints and biotechnological design

期刊

出版社

ELSEVIER
DOI: 10.1016/j.csbj.2020.06.029

关键词

-

资金

  1. DOR grant from Padua University
  2. Cariparo Visiting programme 2018
  3. Padua University
  4. grant Unipd Stars Consolidator FIRMESs
  5. PRIN [2017JL8SRX, 2017 FS5SHL]

向作者/读者索取更多资源

Computationally driven engineering of proteins aims to allow them to withstand an extended range of conditions and to mediate modified or novel functions. Therefore, it is crucial to the biotechnological industry, to biomedicine and to afford new challenges in environmental sciences, such as biocatalysis for green chemistry and bioremediation. In order to achieve these goals, it is important to clarify molecular mechanisms underlying proteins stability and modulating their interactions. So far, much attention has been given to hydrophobic and polar packing interactions and stability of the protein core. In contrast, the role of electrostatics and, in particular, of surface interactions has received less attention. However, electrostatics plays a pivotal role along the whole life cycle of a protein, since early folding steps to maturation, and it is involved in the regulation of protein localization and interactions with other cellular or artificial molecules. Short- and long-range electrostatic interactions, together with other forces, provide essential guidance cues in molecular and macromolecular assembly. We report here on methods for computing protein electrostatics and for individual or comparative analysis able to sort proteins by electrostatic similarity. Then, we provide examples of electrostatic analysis and fingerprints in natural protein evolution and in biotechnological design, in fields as diverse as biocatalysis, antibody and nanobody engineering, drug design and delivery, molecular virology, nanotechnology and regenerative medicine. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据