4.6 Article

Building Upon NB-IoT Networks: A Roadmap Towards 5G New Radio Networks

期刊

IEEE ACCESS
卷 8, 期 -, 页码 188641-188672

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2020.3030653

关键词

Backscatter communication; cloud RAN; enabling market; long-term evolution; machine-type communication; narrowband Internet of Things; 5G new radio coexistence; PHY; MAC; SWOT analysis

向作者/读者索取更多资源

Narrowband Internet of Things (NB-IoT) is a type of low-power wide-area (LPWA) technology standardized by the 3(rd)-Generation Partnership Project (3GPP) and based on long-term evolution (LTE) functionalities. NB-IoT has attracted significant interest from the research community due to its support for massive machine-type communication (mMTC) and various IoT use cases that have stringent specifications in terms of connectivity, energy efficiency, reachability, reliability, and latency. However, as the capacity requirements for different IoT use cases continue to grow, the various functionalities of the LTE evolved packet core (EPC) system may become overladen and inevitably suboptimal. Several research efforts are ongoing to meet these challenges; consequently, we present an overview of these efforts, mainly focusing on the Open System Interconnection (OSI) layer of the NB-IoT framework. We present an optimized architecture of the LTE EPC functionalities, as well as further discussion about the 3GPP NB-IoT standardization and its releases. Furthermore, the possible 5G architectural design for NB-IoT integration, the enabling technologies required for 5G NB-IoT, the 5G NR coexistence with NB-IoT, and the potential architectural deployment schemes of NB-IoT with cellular networks are introduced. In this article, a description of cloud-assisted relay with backscatter communication, a comprehensive review of the technical performance properties and channel communication characteristics from the perspective of the physical (PHY) and medium-access control (MAC) layer of NB-IoT, with a focus on 5G, are presented. The different limitations associated with simulating these systems are also discussed. The enabling market for NB-IoT, the benefits for a few use cases, and possible critical challenges related to their deployment are also included. Finally, present challenges and open research directions on the PHY and MAC properties, as well as the strengths, weaknesses, opportunities, and threats (SWOT) analysis of NB-IoT, are presented to foster the prospective research activities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据