4.6 Article

Power Management Strategy Based on Adaptive Neuro Fuzzy Inference System for AC Microgrid

期刊

IEEE ACCESS
卷 8, 期 -, 页码 192087-192100

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2020.3032705

关键词

Microgrid; renewable energy resources; power management strategy; voltage stability; adaptive neuro fuzzy inference system; double fed induction generator; genetic algorithm; particle swarm optimization

向作者/读者索取更多资源

Microgrids (MGs) have been widely implemented as they increase the efficiency and resiliency of electrical networks. However, the uncertain nature of renewable energy resources (RERs) integrated into the MGs usually results in different technical problems. System stability, the most challenging problem, can be achieved via a robust power management strategy (PMS) of the MG. This paper introduces a PMS based on adaptive neuro fuzzy inference system (ANFIS) for AC MG consisting of a diesel generator (DG), a double fed induction generator (DFIG) driven by a wind turbine (WT) and a solar photovoltaic (PV) panel. The proposed strategy aims to achieve MG power balance, decrease DG fossil fuel to minimum consumption, keep the MG voltage stability and finally tracking the maximum power point (MPP) of each RER. Metaheuristic optimization techniques; including genetic algorithm (GA) and particle swarm optimization (PSO), are employed to train the ANFIS to accomplish the desired objectives and fulfill the generation/consumption balance. The proposed AC MG with the PMS is simulated by the MATLAB/Simulink software in order to analyze the system performance under different climatic conditions. The simulation results under symmetrical and asymmetrical electrical faults validated the effectiveness of the proposed strategy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据