4.6 Article

Fingerprinting-Based Indoor Localization With Commercial MMWave WiFi: A Deep Learning Approach

期刊

IEEE ACCESS
卷 8, 期 -, 页码 84879-84892

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2020.2991129

关键词

Indoor localization; WiFi; millimeter wave; fingerprinting; machine learning; deep neural networks; location; orientation; coordinate estimation

向作者/读者索取更多资源

Existing fingerprint-based indoor localization uses either fine-grained channel state information (CSI) from the physical layer or coarse-grained received signal strength indicator (RSSI) measurements. In this paper, we propose to use a mid-grained intermediate-level channel measurement - spatial beam signal-to-noise ratios (SNRs) that are inherently available and defined in the IEEE 802.11ad/ay standards - to construct the fingerprinting database. These intermediate channel measurements are further utilized by a deep learning approach for multiple purposes: 1) location-only classification; 2) simultaneous location-and-orientation classification; and 3) direct coordinate estimation. Furthermore, the effectiveness of the framework is thoroughly validated by an in-house experimental platform consisting of 3 access points using commercial-off-the-shelf millimeter-waveWiFi routers. The results show a 100% accuracy if the location is only interested, about 99% for simultaneous location-and-orientations classification, and an averaged root mean-square error (RMSE) of 11.1 cm and an average median error of 9.5 cm for direct coordinate estimate, greater than 2-fold improvements over the RMSE of 28.7 cm and median error of 23.6 cm for RSSI-like single SNR-based localization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据