4.6 Article

A Deep Learning Inspired Belief Rule-Based Expert System

期刊

IEEE ACCESS
卷 8, 期 -, 页码 190637-190651

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2020.3031438

关键词

Uncertainty; Deep learning; Expert systems; Learning systems; Associative memory; Prediction algorithms; Fuzzy systems; Knowledge based systems; expert systems; multi-layer neural network; learning systems

向作者/读者索取更多资源

Recent technological advancements in the area of the Internet of Things (IoT) and cloud services, enable the generation of large amounts of raw data. However, the accurate prediction by using this data is considered as challenging for machine learning methods. Deep Learning (DL) methods are widely used to process large amounts of data because they need less preprocessing than traditional machine learning methods. Various types of uncertainty associated with large amounts of raw data hinder the prediction accuracy. Belief Rule-Based Expert Systems (BRBES) are widely used to handle uncertain data. However, due to their incapability of integrating associative memory within the inference procedures, they demonstrate poor accuracy of prediction when large amounts of data is considered. Therefore, we propose the integration of an associative memory based DL method within the BRBES inference procedures, allowing to discover accurate data patterns and hence, the improvement of prediction under uncertainty. To demonstrate the applicability of the proposed method, which is named BRB-DL, it has been fine tuned against two datasets, one in the area of air pollution and the other in the area of power generation. The reliability of the proposed BRB-DL method, has also been compared with other DL methods such as Long-Short Term Memory and Deep Neural Network, and BRBES by taking into account of the air quality dataset from Beijing city and the power generation dataset of a combined cycle power plant. BRB-DL outperforms the above-mentioned methods in terms of prediction accuracy. For example, the Mean Square Error value of BRB-DL is 4.12 whereas for Long-Short Term Memory, Deep Neural Network, Fuzzy Deep Neural Network, Adaptive Neuro Fuzzy Inference System and BRBES it is 18.66, 28.49, 17.05, 16.37 and 38.15 for combined cycle power plant respectively, which are significantly higher.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据