4.5 Article

Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin

期刊

BIOPHYSICAL JOURNAL
卷 95, 期 5, 页码 2402-2414

出版社

CELL PRESS
DOI: 10.1529/biophysj.108.132175

关键词

-

资金

  1. NIGMS NIH HHS [R37 GM029498, R37 GM029498-28, GM29498, R01 GM029498] Funding Source: Medline

向作者/读者索取更多资源

The cell membrane of Salinibacter ruber contains xanthorhodopsin, a light-driven transmembrane proton pump with two chromophores: a retinal and the carotenoid, salinixanthin. Action spectra for transport had indicated that light absorbed by either is utilized for function. If the carotenoid is an antenna in this protein, its excited state energy has to be transferred to the retinal and should be detected in the retinal fluorescence. From fluorescence studies, we show that energy transfer occurs from the excited singlet S-2 state of salinixanthin to the S-1 state of the retinal. Comparison of the absorption spectrum with the excitation spectrum for retinal emission yields 45 +/- 5% efficiency for the energy transfer. Such high efficiency would require close proximity and favorable geometry for the two polyene chains, but from the heptahelical crystallographic structure of the homologous retinal protein, bacteriorhodopsin, it is not clear where the carotenoid can be located near the retinal. The fluorescence excitation anisotropy spectrum reveals that the angle between their transition dipole moments is 56 +/- 3 degrees. The protein accommodates the carotenoid as a second chromophore in a distinct binding site to harvest light with both extended wavelength and polarization ranges. The results establish xanthorhodopsin as the simplest biological excited-state donor-acceptor system for collecting light.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据