4.5 Article

Differential modulation of membrane structure and fluctuations by plant sterols and cholesterol

期刊

BIOPHYSICAL JOURNAL
卷 94, 期 10, 页码 3935-3944

出版社

CELL PRESS
DOI: 10.1529/biophysj.107.123224

关键词

-

向作者/读者索取更多资源

We have studied the concentration and temperature dependent influence of cholesterol, stigmasterol, and sitosterol on the global structure and the bending fluctuations of fluid dimyristoyl phosphatidylcholine and palmitoyl oleoyl phosphatidylcholine bilayers applying small-angle x-ray scattering, as well as dilatometry and ultrasound velocimetry. Independent of the lipid matrix, cholesterol was found to be most efficient in modulating bilayer thickness and elasticity, followed by sitosterol and stigmasterol. This can be attributed to the additional ethyl groups and double bond at the C17 alkyl side-chain of the two plant sterols. Hence, it seems that some. exibility of the sterol hydrocarbon chain is needed to accommodate within the lipid bilayer. In addition, we did not observe two populations of membranes within the putative liquid-ordered/liquid-disordered phase coexistence regime of binary sterol/lipid mixtures. Instead, the diffraction patterns could be interpreted in terms of a uniform phase. This lends further support to the idea of compositional fluctuations of unstable sterol rich domains recently brought up by fluorescence microscopy experiments, which contrasts the formation of stable domains within the miscibility gap of binary lipid/sterol mixtures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据