4.5 Article

Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels

期刊

BIOPHYSICAL JOURNAL
卷 95, 期 1, 页码 273-286

出版社

CELL PRESS
DOI: 10.1529/biophysj.107.121020

关键词

-

向作者/读者索取更多资源

A method is presented to rapidly and precisely measure the conformation, length, speed, and fluorescence intensity of single DNA molecules constrained by a nanochannel. DNA molecules were driven electrophoretically from a nanoslit into a nanochannel to confine and dynamically elongate them beyond their equilibrium length for repeated detection via laser-induced fluorescence spectroscopy. A single-molecule analysis algorithm was developed to analytically model bursts of fluorescence and determine the folding conformation of each stretched molecule. This technique achieved a molecular length resolution of 114 nm and an analysis time of around 20 ms per molecule, which enabled the sensitive investigation of several aspects of the physical behavior of DNA in a nanochannel. lambda-bacteriophage DNA was used to study the dependence of stretching on the applied device bias, the effect of conformation on speed, and the amount of DNA fragmentation in the device. A mixture of lambda-bacteriophage with the fragments of its own HindIII digest, a standard DNA ladder, was sized by length as well as by fluorescence intensity, which also allowed the characterization of DNA speed in a nanochannel as a function of length over two and a half orders of magnitude.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据