4.5 Article

Is Cell Rheology Governed by Nonequilibrium-to-Equilibrium Transition of Noncovalent Bonds?

期刊

BIOPHYSICAL JOURNAL
卷 95, 期 12, 页码 5719-5727

出版社

CELL PRESS
DOI: 10.1529/biophysj.108.139832

关键词

-

资金

  1. National Institutes of Health [GM072744]
  2. University of Illinois

向作者/读者索取更多资源

A living cell deforms or flows in response to mechanical stresses. A recent report shows that dynamic mechanics of living cells depends on the timescale of mechanical loading, in contrast to the prevailing view of some authors that cell rheology is timescale-free. Yet the molecular basis that governs this timescale-dependent behavior is elusive. Using molecular dynamics simulations of protein-protein noncovalent interactions, we show that multipower laws originate from a nonequilibrium-to-equilibrium transition: when the loading rate is faster than the transition rate, the power-law exponent alpha(1) is weak; when the loading rate is slower than the transition rate, the exponent alpha(2) is strong. The model predictions are confirmed in both embryonic stem cells and differentiated cells. Embryonic stem cells are less stiff, more fluidlike, and exhibit greater alpha(1) than their differentiated counterparts. By introducing a near-equilibrium frequency f(eq), we show that all data collapse into two power laws separated by f/f(eq), which is unity. These findings suggest that the timescale-dependent rheology in living cells originates from the nonequilibrium-to-equilibrium transition of the dynamic response of distinct, force-driven molecular processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据