4.5 Article

Structure of the cytosolic part of the subunit b-dimer of Escherichia coli F0F1-ATP synthase

期刊

BIOPHYSICAL JOURNAL
卷 94, 期 12, 页码 5053-5064

出版社

CELL PRESS
DOI: 10.1529/biophysj.107.121038

关键词

-

向作者/读者索取更多资源

The structure of the external stalk and its function in the catalytic mechanism of the F0F1-ATP synthase remains one of the important questions in bioenergetics. The external stalk has been proposed to be either a rigid stator that binds F-1 or an elastic structural element that transmits energy from the small rotational steps of subunits cto the F-1 sector during catalysis. We employed proteomics, sequence-based structure prediction, molecular modeling, and electron spin resonance spectroscopy using site-directed spin labeling to understand the structure and interfacial packing of the Escherichia coli b-subunit homodimer external stalk. Comparisons of bacterial, cyanobacterial, and plant b-subunits demonstrated little sequence similarity. Supersecondary structure predictions, however, show that all compared b-sequences have extensive heptad repeats, suggesting that the proteins all are capable of packing as left-handed coiled-coils. Molecular modeling subsequently indicated that b(2) from the E coli ATP synthase could pack into stable left-handed coiled-coils. Thirty-eight substitutions to cysteine in soluble b-constructs allowed the introduction of spin labels and the determination of intersubunit distances by ESR. These distances correlated well with molecular modeling results and strongly suggest that the E. coli subunit b-dimer can stably exist as a left-handed coiled-coil.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据