4.5 Article

Lateral pressure dependence of the phospholipid transmembrane diffusion rate in planar-supported lipid bilayers

期刊

BIOPHYSICAL JOURNAL
卷 95, 期 1, 页码 186-193

出版社

CELL PRESS
DOI: 10.1529/biophysj.107.118976

关键词

-

向作者/读者索取更多资源

The dependence of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) flip-flop kinetics on the lateral membrane pressure in a phospholipid bilayer was investigated by sum-frequency vibrational spectroscopy. Planar-supported lipid bilayers were prepared on fused silica supports using the Langmuir-Blodgett/Langmuir-Schaeffer technique, which allows precise control over the lateral surface pressure and packing density of the membrane. The lipid bilayer deposition pressure was varied from 28 to 42 mN/m. The kinetics of lipid flip-flop in these membranes was measured by sum-frequency vibrational spectroscopy at 37 degrees C. An order-of-magnitude difference in the rate constant for lipid translocation (10.9 x 10(-4) s(-1) to 1.03 x 10(-4) s(-1)) was measured for membranes prepared at 28 mN/m and 42 mN/m, respectively. This change in rate results from only a 7.4% change in the packing density of the lipids in the bilayer. From the observed kinetics, the area of activation for native phospholipid flip-flop in a protein-free DPPC planar-supported lipid bilayer was determined to be 73 +/- 12 angstrom(2)/molecule at 37 degrees C. Significance of the observed activation area and potential future applications of the technique to the study of phospholipid flip-flop are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据