4.5 Article

Role of helix 0 of the N-BAR domain in membrane curvature generation

期刊

BIOPHYSICAL JOURNAL
卷 94, 期 8, 页码 3065-3073

出版社

BIOPHYSICAL SOC
DOI: 10.1529/biophysj.107.113118

关键词

-

向作者/读者索取更多资源

A group of proteins with cell membrane remodeling properties is also able to change dramatically the morphology of liposomes in vitro, frequently inducing tubulation. For a number of these proteins, the mechanism by which this effect is exerted has been proposed to be the embedding of amphipathic helices into the lipid bilayer. For proteins presenting BAR domains, removal of an N-terminal amphipathic alpha-helix (H0-NBAR) results in much lower membrane tubulation efficiency, pointing to a fundamental role of this protein segment. Here, we studied the interaction of a peptide corresponding to H0-NBAR with model lipid membranes. H0-NBAR bound avidly to anionic liposomes but partitioned weakly to zwitterionic bilayers, suggesting an essentially electrostatic interaction with the lipid bilayer. Interestingly, it is shown that after membrane incorporation, the peptide oligo-merizes as an antiparallel dinner, suggesting a potential role of H0-NBAR in the mediation of BAR domain oligomerization. Through monitoring the effect of H0-NBAR on liposome shape by cryoelectron microscopy, it is clear that membrane morphology is not radically changed. We conclude that H0-NBAR alone is not able to induce vesicle curvature, and its function must be related to the promotion of the scaffold effect provided by the concave surface of the BAR domain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据