4.5 Article

Sarcoplasmic reticulum Ca2+ release declines in muscle fibers from aging mice

期刊

BIOPHYSICAL JOURNAL
卷 94, 期 8, 页码 3178-3188

出版社

BIOPHYSICAL SOC
DOI: 10.1529/biophysj.107.118786

关键词

-

资金

  1. NIA NIH HHS [R01 AG015820, R01 AG013934, AG15820, P30-AG21332, AG13934, R29 AG013934, P30 AG021332] Funding Source: Medline

向作者/读者索取更多资源

This study hypothesized that decline in sarcoplasmic reticulum (SR) Ca2+ release and maximal SR-releasable Ca2+ contributes to decreased specific force with aging. To test it, we recorded electrically evoked maximal isometric specific force followed by 4-chloro-m-cresol (4-CmC)-evoked maximal contracture force in single intact fibers from the mouse flexor digitorum brevis muscle. Significant differences in tetanic, but not in 4-CmC-evoked, contracture forces were recorded in fibers from aging mice as compared to younger mice. Peak intracellular Ca2+ in response to 4-CmC did not differ significantly. SR Ca2+ release was recorded in whole-cell patch-clamped fibers in the linescan mode of confocal microscopy using a low-affinity Ca2+ indicator (Oregon green bapta-5N) with high-intracellular ethylene glycol-bis(alpha-aminoethyl ether)-N,N,N',N'-tetraacetic acid (20 mM). Maximal SR Ca2+ release, but not voltage dependence, was significantly changed in fibers from old compared to young mice. Increasing the duration of fiber depolarization did not increase the maximal rate of SR Ca2+ release in fibers from old compared to young mice. Voltage-dependent inactivation of SR Ca2+ release did not differ significantly between fibers from young and old mice. These findings indicate that alterations in excitation-contraction coupling, but not in maximal SR-releasable Ca2+, account for the age-dependent decline in intracellular Ca2+ mobilization and specific force.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据