4.5 Article

Key interactions in integrin ectodomain responsible for global conformational change detected by elastic network normal-mode analysis

期刊

BIOPHYSICAL JOURNAL
卷 95, 期 6, 页码 2895-2908

出版社

CELL PRESS
DOI: 10.1529/biophysj.108.131045

关键词

-

资金

  1. CREST, Japan Science and Technology Agency
  2. Ministry of Health, Labor and Welfare
  3. Ministry of Education, Culture, Sports, Science and Technology of Japan

向作者/读者索取更多资源

Integrin, a membrane protein with a huge extracellular domain, participates in cell-cell and cell-extracellular-matrix interactions for metazoan. A group of integrins is known to perform a large-scale structural change when the protein is activated, but the activation mechanism and generality of the conformational change remain to be elucidated. We performed normal-mode analysis of the elastic network model on integrin alpha(V)beta(3) ectodomain in the bent form and identified key residues that influenced molecular motions. Iterative normal-mode calculations demonstrated that the specific nonbonded interactions involving the key residues work as a snap to keep integrin in the bent form. The importance of the key residues for the conformational change was further verified by mutation experiments, in which integrin alpha(IIb)beta(3) was used. The conservation pattern of amino acid residues among the integrin family showed that the characteristic pattern of residues seen around these key residues is found in the limited groups of integrin beta-chains. This conservation pattern suggests that the molecular mechanism of the conformational change relying on the interactions found in integrin alpha(V)beta(3) is unique to the limited types of integrins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据