4.5 Article

Unravelling coherent dynamics and energy dissipation in photosynthetic complexes by 2D spectroscopy

期刊

BIOPHYSICAL JOURNAL
卷 94, 期 9, 页码 3613-3619

出版社

CELL PRESS
DOI: 10.1529/biophysj.107.123455

关键词

-

资金

  1. Direct For Mathematical & Physical Scien
  2. Division Of Chemistry [0745892] Funding Source: National Science Foundation
  3. NIGMS NIH HHS [R01 GM059230, GM59230] Funding Source: Medline

向作者/读者索取更多资源

Spectroscopic studies of light harvesting and the subsequent energy conversion in photosynthesis can track quantum dynamics happening on the microscopic level. The Fenna-Matthews- Olson complex of the photosynthetic green sulfur bacteria Chlorobium tepidum is a prototype efficient light-harvesting antenna: it stores the captured photon energy in the form of excitons ( collective excitations), which are subsequently converted to chemical energy with almost 100% efficiency. These excitons show an elaborate relaxation pattern involving coherent and incoherent pathways. We make use of the complex chirality and fundamental symmetries of multidimensional optical signals to design new sequences of ultrashort laser pulses that can distinguish between coherent quantum oscillations and incoherent energy dissipation during the exciton relaxation. The cooperative dynamical features, which reflect the coherent nature of excitations, are amplified. The extent of quantum oscillations and their timescales in photosynthesis can be readily extracted from the designed signals, showing that cooperativity is maintained during energy transport in the Fenna-Matthews-Olson complex. The proposed pulse sequences may also be applied to reveal information on the robustness of quantum states in the presence of fluctuating environments in other nanoscopic complexes and devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据